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Analysis and Design of Cavity-Coupled Microstrip
Couplers and Transitions

David M. Pozar, Fellow, IEEE

Abstract—This paper describes a full-wave moment-method
analysis of an aperture-coupled microstrip coupler using a reso-
nant cavity (rectangular or circular) between the substrate ground
planes. Structures of this type are useful for millimeter-wave
integrated circuits and phased arrays, as they allow the use of a
relatively thick central ground plane to provide isolation, as well as
heat dissipation. Both four-port coupler geometries and two-port
transitions are treated. Equivalent circuits are derived for each of
these problems, and computed results are validated with data from
the literature and with independent calculations from commercial
computer-aided design (CAD) packages and measured data. These
comparisons show that the solutions derived here are accurate
and computationally efficient, and have the added advantage over
commercial CAD packages in that equivalent-circuit parameters
can be obtained directly. The vector Bessel transform is used to
derive the required Green’s function for the circular cavity.

Index Terms—Aperture coupling, cavity coupling, microstrip
couplers.

I. INTRODUCTION

THIS PAPER presents an analysis of a microstrip intercon-
nect geometry that consists of microstrip lines printed on

two parallel substrates, and aperture coupled to each end of a
resonant cavity located between the substrate ground planes.
This structure can be considered as a four-port coupler, but a
two-port transition between the two microstrip lines can be
formed by terminating each line with an open-circuited stub. A
full-wave moment-method solution is used to evaluate the pa-
rameters of the four-port coupler network, and it is shown how
equivalent circuits can be derived and used to design a two-port
microstrip transition. Both rectangular and circular cavities are
considered, and results are compared with previously published
data, commercial computer-aided design (CAD) packages, and
newly measured data. The required Green’s functions for the
circular cavity are derived using a vector Bessel transform.

Coupling structures of this type are of interest in multilayer
millimeter-wave circuits, where the need for heat transfer
from active devices often requires the use of relatively thick
ground planes, as well as electrical interconnections between
layers. Aperture coupling between layers is convenient since it
eliminates the need for vias or other types of direct connections
[1]–[4], which can be especially cumbersome when thick
ground planes are involved. However, as shown in [5]–[7],
coupling through a thick ground plane with an aperture that
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is below resonant size leads to an exponential decrease in
coupling coefficient as ground-plane thickness increases,
since the aperture appears as a waveguide section operating
below cutoff. One approach to avoiding this problem is to
use a coupling slot or aperture that is large enough to allow a
propagating wave to pass through the thick ground plane, as
in [8]. A more general approach is to form a resonant cavity
in the ground plane between the substrate layers—this allows
complete transmission and more design freedom. A similar
idea was used to improve the coupling between a microstrip
feed line and an aperture-coupled microstrip antenna having a
thick ground plane [9].

It might be asked why custom-written computer codes and
analysis are being developed for a problem of this type when
commercially available electromagnetic CAD packages can
model the same geometry. There are two reasons. First, the
computational efficiency of a custom-written code is better
than a general-purpose CAD package by at least an order
of magnitude. For complicated geometries, such as this one,
where many parameters may have to be optimized to achieve a
working design, this can be critical. Secondly, a dedicated anal-
ysis of a problem like this one can lead to equivalent circuits
based on physical parameters of the geometry, providing useful
tools for design and optimization. Such equivalent circuits are
not obtainable from general-purpose electromagnetic analysis
packages.

II. ANALYSIS OF CAVITY-OUPLED MICROSTRIP LINES

A. Geometry of the Problem

The geometry of the cavity-coupled microstrip lines is shown
in Fig. 1(a) and (b). For convenience, we label the bottom sub-
strate as the feed-line substrate, and the top substrate as the
coupled-line substrate. The feed substrate contains the feed mi-
crostrip line and the feed side-coupling slot. The coupled-line
substrate contains the coupled microstrip line and the coupled
side-coupling slot. The cavity is located between the ground
planes of the two substrates, and may be filled with a dielectric
material. The cavity may be rectangular or circular, and does
not have to be resonant. We assume the microstrip lines are
orthogonal to, and centered across the width of, the coupling
slots, and that the coupling slots are centered with respect to the
cavity endwalls. These conditions result in maximum coupling
and simplify the analysis. Loss can be included for all three di-
electric materials.

The structure shown in Fig. 1(a) and (b) involves four ter-
minal ports (at the two ends of each microstrip line). A two-port
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(a)

(b)

Fig. 1. (a) Side view of cavity coupled microstrip lines. (b) Top view of
microstrip lines coupled with a circular cavity.

transition between the two layers can be easily formed by ter-
minating each microstrip line with an open-circuit stub so that
there is an input port on the feed line and an output port on the
coupled line. The length of the stubs are design variables that
must be selected, along with the slot and cavity dimensions, for
the desired coupling level and input matching. Details of this
procedure will be discussed.

B. Definition of Variables

The following parameters and variables are used in this paper.
Relative permittivity of the coupled-line substrate.
Loss tangent of feed-line substrate.
Feed-line substrate thickness .
Width of feed microstrip line .
Length of feed side aperture ( -dimension ).
Width of feed side aperture ( -dimension ).
Relative permittivity of the feed-line substrate.
Loss tangent of coupled-line substrate.
Coupled-line substrate thickness .
Width of coupled microstrip line .
Length of coupled side aperture ( -dimension ).
Width of coupled side aperture ( -dimension ).

-dimension of rectangular cavity, radius of circular
cavity .

-dimension of rectangular cavity .
Thickness of cavity (ground-plane thickness .
Relative permittivity of cavity.
Free-space wavenumber .

Fig. 2. Geometry of cavity-coupled microstrip lines showing the equivalent
magnetic currents.

C. Moment-Method Analysis

The analysis begins by using the equivalence theorem to re-
place the slot apertures with ground planes, and placing equal,
but opposite magnetic surface currents over the aperture areas.
Fig. 2 shows the arrangement of the equivalent magnetic surface
currents.

The magnetic surface currents in the apertures are assumed
to flow only in the -direction, which is a good approximation
for thin slots (but may be inaccurate if the slot is not thin). We
can then express the magnetic surface current densities in the
coupling apertures as

(1)

(2)

where and are the unknown amplitudes of the magnetic
surface current expansions in the feed- and coupled-line aper-
tures, respectively, and is the expansion mode, where
the superscript , denotes the feed or coupled slot mode. Since
the slot length is generally below resonant size, a single piece-
wise sinusoidal (PWS) expansion mode is sufficient [2], [3]. We
use a PWS expansion along the slot length, with a uniform dis-
tribution along the width

for (3)

where is the slot length and is the slot width. is the
effective wavenumber to be used in the PWS expansion—a good
choice is the average value of the wavenumbers in the two ad-
jacent dielectric materials, i.e.,

(4)

The fields on the feed microstrip line consist of incident and
reflected waves to the left-hand side of the aperture, and a for-
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ward transmitted wave to the right-hand side. These fields can
be written as

for

for
(5)

for

for
(6)

The fields on the coupled line consist of waves traveling outward
from the slot and can be written as

for
for

(7)
for

for
(8)

In (5)–(8), we assume a unit incident field on the feed line at
port 1 and assume the output ports are matched. The
following coefficients are then defined:

reflection coefficient on feed line at port 1;
transmission coefficient on coupled line at port 3;
coupling coefficient on coupled line at port 3.

The phase reference for all traveling waves is at the center of
the aperture. We also define and as the transverse
modal fields of the microstrip lines and use a superscript or
to denote the feed or coupled line, respectively. The microstrip
line modal fields are normalized so that

(9)

where represents the cross section of the microstrip line. The
modal fields of the microstrip line can be found using the appro-
priate Green’s functions [2]. The propagation constant for the
microstrip line is , which may be different for the two lines.

The reciprocity method of [2] and [3] can be used to find the
reflected, transmitted, and coupling coefficients in terms of the
slot modal voltages

(10)

(11)

(12)

In (10) and (12), we are using the modal voltages defined as

(13)

(14)

where the integration is over the aperture surface and is
the -component of the transverse modal field of either the feed
or coupled microstrip line. These integrals must be determined
numerically, but convergence is fairly fast.

Enforcing continuity of across both sides of the feed aper-
ture gives the following equation:

(15)

where the notation refers to the magnetic field
on the cavity or the feed-line side of the feed aperture, due to the
magnetic surface current in the feed- or coupled-line aperture.
The terms on the left-hand side of (15) represent the fields on the
cavity side of the feed aperture due to the magnetic surface cur-
rents in the feed and coupled apertures, respectively. The terms
on the right-hand side represent the fields on the feed substrate
side of the aperture due to the magnetic surface current in the
feed aperture, and the field from the microstrip feed line. Using
(1), (2), and (6) in (15) gives

(16)

Applying a similar procedure for the continuity of across
the coupled side aperture gives

(17)

where the notation refers to the magnetic field
on the cavity or coupled-line side of the coupled aperture due to
the magnetic surface current in the feed- or coupled-line aper-
ture. The terms on the left-hand side of (17) represent the fields
on the coupled-line side of the aperture due to the magnetic
surface current in the aperture, and the field from the coupled
microstrip line. The terms on the right-hand side represent the
fields on the cavity side of the aperture due to the magnetic sur-
face currents in the coupled side aperture, and the feed side aper-
ture, respectively. Using (1), (2), and (8) in (17) gives

(18)
The above fields are expressible in terms of the appropriate
Green’s functions for the cavity (internal) or substrate (external)
regions.

Multiplying both sides of (16) by the magnetic surface current
expansion mode and integrating over the feed aperture
surface gives

(19)

while multiplying both sides of (18) by the magnetic surface
current expansion mode and integrating over the cou-
pled aperture surface gives

(20)

In (19) and (20), and are the aperture self-admit-
tances seen looking outward from either the feed or coupled slot,
respectively,

(21)
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The following admittances represent internal coupling between
the coupled and feed slots:

(22)

(23)

(24)

(25)

The admittances defined in (22)–(25) represent the internal cou-
pling between the magnetic currents on the top and bottom of
the cavity. The self-admittances of the feed and coupled side
currents are expressed in (22) and (25), while the mutual inter-
action between the feed and coupled aperture currents are ex-
pressed in (23) and (24)—these two terms should be identical
by reciprocity.

By using (10) and (12) in (19) and (20) to eliminate and
, the unknown magnetic current amplitudes and can be

obtained. The results can be simplified by defining the following
constants:

(26)

(27)

(28)

(29)

We then have that

(30)

(31)

Once these amplitudes are determined, (10)–(12) can be used to
find , , and .

The substrate Green’s function required for (13), (14), and
(21) is given in [2] and [3]. The Green’s functions for rectan-
gular and circular cavities required for (22)–(25) are given in the
Appendix. The Fourier transform integrations in (21)–(25) can
be evaluated in closed form for a rectangular cavity [9], but must
be numerically evaluated in the case of a circular cavity. The
Bessel functions that appear in the expressions of circular cavity
Green’s functions further increase computation time. Neverthe-
less, the computation time per point is typically 1–2 s for the
rectangular cavity, and 10–15 s for the circular cavity [on an
800-MHz personal computer (PC)]. These times are typically
one to two orders of magnitude faster than solutions obtained
with commercially available CAD software packages.

Fig. 3. Equivalent circuit of a cavity-coupled microstrip coupler. The cavity is
represented in terms of its moment-method admittance matrix.

D. Equivalent Circuits

The equivalent circuit of the cavity-coupled microstrip-line
coupler is similar to the equivalent circuit of aperture-coupled
microstrip lines given in [3], with the addition of the cavity ad-
mittance matrix between the coupling transformers, as shown in
Fig. 3. The admittance matrix of the slot-coupled cavity is given
by the moment-method admittances of (22)–(25). The trans-
formers account for the difference in definitions of transmis-
sion-line voltages and slot voltages, while the shunt admittances

and represent the self-susceptances of the slots.
The transformer turns ratios are given by

(32)

(33)

This is a fairly general representation of the coupler, but a more
physical picture can be obtained if the cavity allows only a single
propagating mode (in practice, the typical situation). The cou-
pling from the feed-line slot to the coupled-line slot can then be
represented as a section of transmission line, with transformers
at each end to account for the transition between the slot volt-
ages and equivalent modal voltage that can be defined for the
waveguide [9], [10]. The resulting equivalent circuit is shown
in Fig. 4, and is similar to the one used in [9] for cavity-coupled
microstrip antennas.

In this circuit, the slot self-admittances of the cavity must be
modified by subtracting the terms that account for propagation
of power through the propagating waveguide mode ( for
rectangular waveguide or for circular waveguide). Thus,

(34)

(35)

where and represent the internal feed and coupled
slot self-admittances due to only the propagating term of the
cavity expansion. These admittances correspond to a single term
of the series representation of the cavity Green’s function. In
the absence of losses, the modified admittances of (34) and (35)
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Fig. 4. Equivalent circuit of the cavity-coupled microstrip coupler. The cavity
is represented as a section of transmission line.

would be purely imaginary, and account for the reactive effects
of nonpropagating modes.

The transformer turns ratios for the additional transformers in
Fig. 4 are defined in the Appendix for rectangular and circular
cavities.

III. TWO-PORT CAVITY-COUPLED MICROSTRIP TRANSITION

Terminating each microstrip line with an open-circuited stub
converts the four-port coupler to a two-port transition between
the substrate layers. The equivalent circuit for this configuration
is shown in Fig. 5, and is derived from the circuit of Fig. 4 by
terminating ports 2 and 4 with reactances and , re-
spectively, representing the reactances of the open-circuit stubs
on the feed and coupled lines.

In this circuit, we have also combined the pairs of trans-
formers on either side of the cavity, and transformed the admit-
tances through these transformers. These new admittances are
given as

(36)

(37)

Total coupling will occur between ports 1 and 3 if the input
impedance of the transition is matched to . There are a
large number of interdependent parameters, however, that must
be properly selected before such a design is possible. Besides
the substrate parameters, these include the dimensions of both
slots, the cross-sectional dimensions of the cavity, the length of
the cavity, and the dielectric constant of the material filling the
cavity. If these parameters allow a matched solution, the tuning

Fig. 5. Equivalent circuit of a two-port cavity-coupled microstrip transition.

stubs on ports 2 and 4 can be adjusted to provide a matched
input.

If port 3 is terminated in a matched load of , then the
load admittance seen looking into the primary side of the cou-
pled-line transformer of Fig. 5 can be expressed as

(38)

This admittance is then transformed through the transmis-
sion-line section

(39)

Finally, the input impedance seen looking into port 1 is

(40)

We can attempt a transition design by first choosing the cou-
pled-line stub reactance to cancel the reactance of .
Using (37) then leads to the following formula for :

(41)

where . If the argument of the
square-root term in (41) is negative, then no matching solution
is possible—this usually means that the slot length is too small
or that the cavity parameters do not allow a propagating mode.
Once the reactance is found from (41), the coupled-line stub
length can be found from

(42)

The input impedance can then be made real by using the
feed-line stub to cancel the reactance of , which yields the
following equation for :

(43)
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The above procedure only yields a real input impedance—the
real part of the input impedance must still be matched to by
proper selection of the slot and cavity parameters. This can be
very difficult in practice.

The design procedure outlined above generally results in a
transition with different stub lengths for the feed and coupled
lines, even if the two substrates are identical. From symmetry,
it is clear that a design where both stub lengths are the same
must be possible, but we have not been able to derive a simple
closed-form solution (in terms of the equivalent-circuit param-
eters) for this case. Finally, note that it is also possible to termi-
nate port 3 with an open-circuited stub, with port 4 used as the
output port. This will lead to the same results as above, except
for a 180 phase shift in the output voltage. It is also possible
to obtain a broad-band 180 3-dB splitter by using both ports 3
and 4 as output ports.

A. Transition Response

The response of the two-port transition can be found using
the equivalent circuit of Fig. 5 [after the parameters of this cir-
cuit have been found from the moment-method analysis and
(25)–(27)], but a more direct method is to convert the -param-
eters of the four-port coupler to the parameters of the two-port
transition. Due to symmetry, there are only four unique param-
eters in the 4 4 matrix of the coupler (one row or column).
These can be written in terms of the , , and parameters
defined above in the moment-method analysis as

(44)

(45)

(46)

(47)

Fig. 6 shows a block diagram of a four-port coupler with ports
2 and 4 terminated with loads having reflection coefficients
and , respectively. These coefficients are determined from
the stub reactances and

In Fig. 6, we assume a unit amplitude wave incident at port
1, and refer to the reflection coefficient at port 1 as , and
the transmission coefficient at port 3 as , to distinguish these
coefficients from the corresponding terms and defined for
the four-port coupler of Fig. 3. A straightforward, but lengthy
analysis gives and in terms of the four-port -parameters
as follows:

(48)

(49)

Fig. 6. Block diagram of the four-port coupler terminated with loads to form
a two-port transition.

Fig. 7. Calculated coupling of a four-port coupler with a thick ground plane
(rectangular cavity) compared with data from Ensemble. f = 4 GHz, " =

" = 2:22, d = d = 0:0762 cm, tan � = tan � = 0:001, b = L =

L = 1:5 cm, a = W = W = 0:11 cm, t = 0�1:026 cm, " t = 2:22,
and w = w = 0:254 cm.

IV. EXAMPLES

A. Rectangular Cavity

The solution described above was first validated by com-
parison with the zero-thickness ground-plane case described
in [3]. We next considered coupling through a thick ground
plane, which is the limiting case of a rectangular cavity having
cross-sectional dimensions equal to the feed and coupling slot
dimensions, i.e., and . We at-
tempted to compare with calculated data from [6], but noticed
that the calculations presented in Fig. 2 of that paper are clearly
in error, as they indicate an increase in coupling with an increase
in ground-plane thickness, rather than a decrease (although
the zero-thickness ground plane data of [6] did agree with our
earlier published data given in [3]). Instead, we used a similar
geometry as in [6], and compared our results with calculations
from Ansoft’s Ensemble, at a fixed frequency of 4 GHz, with
ground-plane thickness ranging from 0 to 10.26 mm. Calcu-
lated results for are shown in Fig. 7 versus ground-plane
(cavity) thickness at a frequency of 4 GHz. Note that coupling
drops quickly with an increase in ground-plane thickness and
that there is good agreement between our results and those from
Ensemble. There is a slight difference between the two results
that increases to approximately 1.5 dB for a ground-plane
thickness of 10 mm—the reason for this disparity is not clear.
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Fig. 8. Calculated insertion loss compared with calculations and
measurements from [8] for a two-port microstrip transition with
a thick ground plane (rectangular cavity). " = " = 2:20,
d = d = 0:158 cm, tan � = tan � = 0:001, b = L = L = 1:27 cm,
a = W = W = 0:254 cm, t = 2:54 cm, " = 10:5 � 0:25,
w = w = 0:498 cm, and ` = ` = 1:651 cm.

For an independent calculation, we can model to a very good
approximation the variation of coupling with ground-plane
thickness by assuming a single evanescent mode in the wave-
guide; i.e., for a reasonably thick ground plane, the coupling
must vary as

(50)

where is the coupling level for and is the attenuation
constant of the evanescent waveguide mode

(51)

At , the coupling level is 8.1 dB, and we can calculate
m from (51). For mm, (50) gives

dB, which is within approximately 1 dB of our
calculated results.

Next, we compared our calculations with the measurements
and calculations for the two-port microstrip transition with a
thick ground plane presented in [8]. Note that this is a symmetric
transition, having the same substrates and stub lengths on both
the feed- and coupled-line sides of the structure. Also note that
the cavity has a filling with a high dielectric constant with a
relatively large tolerance. Results for insertion loss versus fre-
quency are shown in Fig. 8. Agreement appears to be very good,
and the highly resonant behavior is modeled quite well. There
is a slight shift between measured and calculated results for the
resonant peak at the highest frequency, but this may be attrib-
utable to the uncertainty in the dielectric constant of the mate-
rial filling the cavity. Small air gaps in the physical model may
have a similar effect on the measured data. The cutoff frequency
of the connecting waveguide is approximately 3.64 GHz—the
data clearly show that below this frequency strong coupling is
not possible.

For a third example, we treat a two-port coupler with a rect-
angular cavity having a size different than the coupling slots.
Note that the ground plane thickness is 6.12 cm—this dimension

Fig. 9. Calculated insertion loss compared with results from Ensemble for a
two-port microstrip transition with a large rectangular cavity. " = " =

2:20, d = d = 0:0762 cm, tan � = tan � = 0:001, L = L =

2:70 cm, W = W = 0:11 cm, a = b = 4:04 cm, t = 6:12 cm, " =

2:20, w = w = 0:254 cm, ` = 1:710 cm, and ` = 1:677 cm.

Fig. 10. Comparison of measured and calculated insertion loss for a two-port
transition using a circular cavity. " = " = 2:20, d = d = 0:0787 cm,
tan � = tan � = 0:001, L = L = 2:40 cm, W = W = 0:2 cm,
a = 2:64 cm, t = 6:77 cm, " = 1:0, w = w = 0:242 cm, and
` = ` = 1:26 cm.

is in the dielectric-filled waveguide at 3 GHz. The calcu-
lated insertion loss for this transition is plotted versus frequency
in Fig. 9 and compared with results from Ensemble. Agreement
is quite good, and the high- nature of coupling with the cavity
can be clearly seen. We also compared the -parameters for
the four-port version of this geometry with Ensemble with good
agreement for both magnitude and phase.

B. Circular Cavity

There are no results for microstrip couplers using circular
cavities in the literature and Ensemble does not treat circular
cavities, thus, a microstrip transition using a circular cavity was
fabricated and tested. The cavity was designed to have a res-
onant frequency of 4 GHz. The results are shown in Fig. 10,
where it is seen that the present solution is in good agreement
with measured data.
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Fig. 11. Comparison of calculated insertion loss for two-port transitions using
either a rectangular (square) cavity or a circular cavity. Both cavities have a
resonant frequency of 3 GHz. " = " = 2:20, d = d = 0:0762 cm,
tan � = tan � = 0:001, L = L = 2:70 cm, W = W = 0:11 cm,
a = b = 4:04 cm (rectangular cavity), a = 2:3705 cm (circular cavity),
t = 6:12 cm, " = 2:20, w = w = 0:254 cm, ` = 1:710 cm, and
` = 1:677 cm.

Another interesting comparison is to compare the response
of a coupler using a circular cavity with that of a coupler using
a square cavity having the same resonant frequency. The rect-
angular cavity transition treated in Fig. 9 was square in cross
section, dielectric filled, in length, and had a resonant fre-
quency of 3 GHz. If we use a circular cavity of the same physical
length with a radius chosen so that the resonant frequency is also
3 GHz, we should expect to see a similar response. Indeed, this
is the case, as seen in the data of Fig. 11.

V. CONCLUSION

This paper has described a full-wave moment-method anal-
ysis of an aperture-coupled microstrip coupler using a resonant
cavity between the substrate ground planes. Both four-port
coupler geometries and two-port transitions have been treated.
Equivalent circuits have been derived for each of these prob-
lems, and computed results have been validated with data from
the literature and with independent calculations from commer-
cial CAD packages and measured data. These comparisons
have shown that the solutions derived here are accurate and
computationally efficient, and have the added advantage over
commercial CAD packages in that equivalent-circuit parame-
ters can be obtained directly. The vector Bessel transform was
used to derive the required Green’s function for the circular
cavity.

It was found that a cavity may be inserted between the
substrate ground planes of two aperture-coupled microstrip
lines, although the coupling level may decrease slightly (this
can be compensated for by increasing the size of the coupling
slots). In addition, the resonant nature of the cavity results in
a much narrower bandwidth over which tight coupling can be
achieved. Another possible disadvantage of introducing the
cavity is that it appears that significant coupling only occurs
when the cavity is resonant, meaning that the electrical length
of the cavity (ground-plane thickness) must be —this may

Fig. 12. Geometry of a circular cavity.

result in impractically thick ground planes unless the frequency
is very high.

APPENDIX

Rectangular Cavity Green’s Function

The required Green’s function for the rectangular cavity
gives the component of the magnetic field at due
to a -directed magnetic current at . This
result can be used to evaluate both self-admittance and mutual
admittance between two slots located in the endwalls of the
cavity by setting for self-admittances and for
mutual admittances. The cross section of the cavity is assumed
to extend from and and from
in height as follows:

(A.1)

In this expression, the following variables are defined:

(A.2)

(A.3)

(A.4)

for
for

(A.5)

For a rectangular slot centered in the cavity endwall, terms in
the series with odd or even are zero. Note that (A.1) is a
space-domain (not spectral-domain) representation.

Derivation of Circular-Cavity Green’s Function

The circular-cavity Green’s function for vector magnetic cur-
rent sources has not, to our knowledge, appeared in the liter-
ature and, therefore, its derivation is outlined here using the
Fourier–Bessel transform technique described in [12]. The ge-
ometry of the circular cavity is shown in Fig. 12. The radius is
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, the height is , and the material filling the cavity has a relative
dielectric constant of .

A magnetic current on one of the cavity endwalls will excite
both TE and TM modes in the cavity. Thus, the fields can be
expressed in terms of the electric and magnetic vector potentials
as [11]

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

The vector potentials can be expressed in Fourier–Bessel series
form as

(A.12)

(A.13)

where the following terms are defined:

(A.14)

(A.15)

(A.16)

(A.17)

Note that the radial and -dependencies of the potentials have
been chosen to satisfy the boundary conditions that and

at and , and that at .
Next we define the vector Bessel transform pair as [12]

(A.18)

(A.19)

where the following matrices are defined:

(20)

(A.21)

With these definitions, it can be shown that the following
identity results from (A.18) and (A.19):

(A.22)

where the superscript represents transpose and is the Kro-
necker delta symbol

The vector Bessel transform greatly simplifies the manipulation
and inversion of the vector potentials and the associated coef-
ficients. Thus, using (A.6) and (A.7), (A.12) and (A.13), and
(A.20) allows the transverse electric field in the cavity to be ex-
pressed as

(A.23)

The relation of (A.19) can then be used to invert (36) to find
the unknown coefficients in terms of the transverse electric
fields

(A.24)

Now assume a magnetic surface current source
on the bottom endwall at . Since , we have
that and at
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. Thus, (A.24) can be rewritten in terms of the cylindrical
components of the source current as

(A.25)

The cylindrical components of the source current are given in
terms of the rectangular component as

The required matrix product can be found as
(A.26), shown at the bottom of this page. The integration in
(A.25) can be evaluated numerically to give and , i.e.,
the coefficients of the vector potentials for . This can be
done most efficiently by calculating a two-dimensional array of
coefficients for a finite range of and . The integration in
(A.25) is over the magnetic surface current density; in this case,
the slot on either the feed- or coupled-line substrate. This can be
facilitated by converting the integration in (A.25) to rectangular
coordinates.

After the and coefficients have been determined,
the transverse magnetic fields can be computed as follows:

(A.27)

The -component of the magnetic field is found from (A.27)
as . These results can be used for all
four terms of the cavity admittances, defined in (22)–(25), be-
tween the feed and coupled substrate slots by letting the source
be located at , and the test source be located at either

(for the self-admittance terms) or (for the mutual
admittance terms). We have found that the admittances converge
fairly well with the series in (A.27) truncated for
and , but more terms may be required for certain
parameters. Also, due to symmetry for a centered coupling slot,
the and coefficients computed from (A.25) are iden-
tically zero for even.

Transformer Turns Ratio for Rectangular Cavity

For a propagating rectangular waveguide mode, the
transformer turns ratios used in the equivalent circuit of Fig. 4
are given by [9]

(A.28)

(A.29)

where and are the dimensions of the waveguide cross section,
and and are constants related to the modal voltages of
the waveguide mode

(A.30)

(A.31)

and are the wave admittance and propagation constant
for the waveguide mode, and is the Fourier trans-
form of the PWS expansion mode used in the feed or coupled
slot

(A.32)

Transformer Turns Ratios for Circular Cavity

The transformer turns ratios and for the circular
cavity can be derived by first defining equivalent voltages for
the dominant circular waveguide mode in terms of the
waveguide modal fields [10]

(A.33)

(A.34)

where and are the transverse modal fields of the mode,
and are constants to be determined, is the voltage

on the equivalent transmission line, and is the amplitude of
the transverse waveguide fields. Also, is the wave
impedance of the mode, and is the propagation constant. Thus,
we see that .

For our purposes, we can define the transverse fields of the
circular waveguide mode as

(A.35)

(A.36)

(A.26)
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In these expressions, is the cutoff
wavenumber of the mode.

The definition of equivalent voltages also requires normaliza-
tion of power so that

(A.37)

Using (A.33), (A.34), and (A.37) gives expressions for the
constants and in terms of the power in the waveguide
mode and its wave impedance

(A.38)

(A.39)

Now, by reciprocity, the excitation of the waveguide
mode due to the magnetic current in the slot can be computed
as [2], [10]

(A.40)

This integration must be done numerically. Defining the in-
tegral as

and using (A.38) and (A.40), allows the turns ratio to be calcu-
lated as

(A.41)

This result can be applied to the transformers on both the feed
and coupled sides ( and ).
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